Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Stat Med ; 42(14): 2394-2408, 2023 06 30.
Article in English | MEDLINE | ID: covidwho-2305618

ABSTRACT

Competing risks data are commonly encountered in randomized clinical trials or observational studies. Ignoring competing risks in survival analysis leads to biased risk estimates and improper conclusions. Often, one of the competing events is of primary interest and the rest competing events are handled as nuisances. These approaches can be inadequate when multiple competing events have important clinical interpretations and thus of equal interest. For example, in COVID-19 in-patient treatment trials, the outcomes of COVID-19 related hospitalization are either death or discharge from hospital, which have completely different clinical implications and are of equal interest, especially during the pandemic. In this paper we develop nonparametric estimation and simultaneous inferential methods for multiple cumulative incidence functions (CIFs) and corresponding restricted mean times. Based on Monte Carlo simulations and a data analysis of COVID-19 in-patient treatment clinical trial, we demonstrate that the proposed method provides global insights of the treatment effects across multiple endpoints.


Subject(s)
COVID-19 , Humans , Proportional Hazards Models , Risk Factors , Survival Analysis , Research Design
2.
Biometrics ; 2022 Aug 26.
Article in English | MEDLINE | ID: covidwho-2008733

ABSTRACT

Competing risks data are commonly encountered in randomized clinical trials and observational studies. This paper considers the situation where the ending statuses of competing events have different clinical interpretations and/or are of simultaneous interest. In clinical trials, often more than one competing event has meaningful clinical interpretations even though the trial effects of different events could be different or even opposite to each other. In this paper, we develop estimation procedures and inferential properties for the joint use of multiple cumulative incidence functions (CIFs). Additionally, by incorporating longitudinal marker information, we develop estimation and inference procedures for weighted CIFs and related metrics. The proposed methods are applied to a COVID-19 in-patient treatment clinical trial, where the outcomes of COVID-19 hospitalization are either death or discharge from the hospital, two competing events with completely different clinical implications.

3.
Open Forum Infect Dis ; 8(6): ofab195, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1258789

ABSTRACT

BACKGROUND: Sustained molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in the upper respiratory tract (URT) in mild to moderate coronavirus disease 2019 (COVID-19) is common. We sought to identify host and immune determinants of prolonged SARS-CoV-2 RNA detection. METHODS: Ninety-five symptomatic outpatients self-collected midturbinate nasal, oropharyngeal (OP), and gingival crevicular fluid (oral fluid) samples at home and in a research clinic a median of 6 times over 1-3 months. Samples were tested for viral RNA, virus culture, and SARS-CoV-2 and other human coronavirus antibodies, and associations were estimated using Cox proportional hazards models. RESULTS: Viral RNA clearance, as measured by SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR), in 507 URT samples occurred a median (interquartile range) 33.5 (17-63.5) days post-symptom onset. Sixteen nasal-OP samples collected 2-11 days post-symptom onset were virus culture positive out of 183 RT-PCR-positive samples tested. All participants but 1 with positive virus culture were negative for concomitant oral fluid anti-SARS-CoV-2 antibodies. The mean time to first antibody detection in oral fluid was 8-13 days post-symptom onset. A longer time to first detection of oral fluid anti-SARS-CoV-2 S antibodies (adjusted hazard ratio [aHR], 0.96; 95% CI, 0.92-0.99; P = .020) and body mass index (BMI) ≥25 kg/m2 (aHR, 0.37; 95% CI, 0.18-0.78; P = .009) were independently associated with a longer time to SARS-CoV-2 viral RNA clearance. Fever as 1 of first 3 COVID-19 symptoms correlated with shorter time to viral RNA clearance (aHR, 2.06; 95% CI, 1.02-4.18; P = .044). CONCLUSIONS: We demonstrate that delayed rise of oral fluid SARS-CoV-2-specific antibodies, elevated BMI, and absence of early fever are independently associated with delayed URT viral RNA clearance.

4.
JAMA Netw Open ; 4(3): e213071, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1147545

ABSTRACT

Importance: Clinical effectiveness data on remdesivir are urgently needed, especially among diverse populations and in combination with other therapies. Objective: To examine whether remdesivir administered with or without corticosteroids for treatment of coronavirus disease 2019 (COVID-19) is associated with more rapid clinical improvement in a racially/ethnically diverse population. Design, Setting, and Participants: This retrospective comparative effectiveness research study was conducted from March 4 to August 29, 2020, in a 5-hospital health system in the Baltimore, Maryland, and Washington, DC, area. Of 2483 individuals with confirmed severe acute respiratory syndrome coronavirus 2 infection assessed by polymerase chain reaction, those who received remdesivir were matched to infected individuals who did not receive remdesivir using time-invariant covariates (age, sex, race/ethnicity, Charlson Comorbidity Index, body mass index, and do-not-resuscitate or do-not-intubate orders) and time-dependent covariates (ratio of peripheral blood oxygen saturation to fraction of inspired oxygen, blood pressure, pulse, temperature, respiratory rate, C-reactive protein level, complete white blood cell count, lymphocyte count, albumin level, alanine aminotransferase level, glomerular filtration rate, dimerized plasmin fragment D [D-dimer] level, and oxygen device). An individual in the remdesivir group with k days of treatment was matched to a control patient who stayed in the hospital at least k days (5 days maximum) beyond the matching day. Exposures: Remdesivir treatment with or without corticosteroid administration. Main Outcomes and Measures: The primary outcome was rate of clinical improvement (hospital discharge or decrease of 2 points on the World Health Organization severity score), and the secondary outcome, mortality at 28 days. An additional outcome was clinical improvement and time to death associated with combined remdesivir and corticosteroid treatment. Results: Of 2483 consecutive admissions, 342 individuals received remdesivir, 184 of whom also received corticosteroids and 158 of whom received remdesivir alone. For these 342 patients, the median age was 60 years (interquartile range, 46-69 years), 189 (55.3%) were men, and 276 (80.7%) self-identified as non-White race/ethnicity. Remdesivir recipients had a shorter time to clinical improvement than matched controls without remdesivir treatment (median, 5.0 days [interquartile range, 4.0-8.0 days] vs 7.0 days [interquartile range, 4.0-10.0 days]; adjusted hazard ratio, 1.47 [95% CI, 1.22-1.79]). Remdesivir recipients had a 28-day mortality rate of 7.7% (22 deaths) compared with 14.0% (40 deaths) among matched controls, but this difference was not statistically significant in the time-to-death analysis (adjusted hazard ratio, 0.70; 95% CI, 0.38-1.28). The addition of corticosteroids to remdesivir was not associated with a reduced hazard of death at 28 days (adjusted hazard ratio, 1.94; 95% CI, 0.67-5.57). Conclusions and Relevance: In this comparative effectiveness research study of adults hospitalized with COVID-19, receipt of remdesivir was associated with faster clinical improvement in a cohort of predominantly non-White patients. Remdesivir plus corticosteroid administration did not reduce the time to death compared with remdesivir administered alone.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Hospitalization , Adenosine Monophosphate/therapeutic use , Aged , Alanine/therapeutic use , Baltimore , COVID-19/virology , Case-Control Studies , Comparative Effectiveness Research , District of Columbia , Female , Hospital Mortality , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
5.
Ann Intern Med ; 174(6): 777-785, 2021 06.
Article in English | MEDLINE | ID: covidwho-1110712

ABSTRACT

BACKGROUND: Predicting the clinical trajectory of individual patients hospitalized with coronavirus disease 2019 (COVID-19) is challenging but necessary to inform clinical care. The majority of COVID-19 prognostic tools use only data present upon admission and do not incorporate changes occurring after admission. OBJECTIVE: To develop the Severe COVID-19 Adaptive Risk Predictor (SCARP) (https://rsconnect.biostat.jhsph.edu/covid_trajectory/), a novel tool that can provide dynamic risk predictions for progression from moderate disease to severe illness or death in patients with COVID-19 at any time within the first 14 days of their hospitalization. DESIGN: Retrospective observational cohort study. SETTINGS: Five hospitals in Maryland and Washington, D.C. PATIENTS: Patients who were hospitalized between 5 March and 4 December 2020 with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) confirmed by nucleic acid test and symptomatic disease. MEASUREMENTS: A clinical registry for patients hospitalized with COVID-19 was the primary data source; data included demographic characteristics, admission source, comorbid conditions, time-varying vital signs, laboratory measurements, and clinical severity. Random forest for survival, longitudinal, and multivariate (RF-SLAM) data analysis was applied to predict the 1-day and 7-day risks for progression to severe disease or death for any given day during the first 14 days of hospitalization. RESULTS: Among 3163 patients admitted with moderate COVID-19, 228 (7%) became severely ill or died in the next 24 hours; an additional 355 (11%) became severely ill or died in the next 7 days. The area under the receiver-operating characteristic curve (AUC) for 1-day risk predictions for progression to severe disease or death was 0.89 (95% CI, 0.88 to 0.90) and 0.89 (CI, 0.87 to 0.91) during the first and second weeks of hospitalization, respectively. The AUC for 7-day risk predictions for progression to severe disease or death was 0.83 (CI, 0.83 to 0.84) and 0.87 (CI, 0.86 to 0.89) during the first and second weeks of hospitalization, respectively. LIMITATION: The SCARP tool was developed by using data from a single health system. CONCLUSION: Using the predictive power of RF-SLAM and longitudinal data from more than 3000 patients hospitalized with COVID-19, an interactive tool was developed that rapidly and accurately provides the probability of an individual patient's progression to severe illness or death on the basis of readily available clinical information. PRIMARY FUNDING SOURCE: Hopkins inHealth and COVID-19 Administrative Supplement for the HHS Region 3 Treatment Center from the Office of the Assistant Secretary for Preparedness and Response.


Subject(s)
COVID-19/mortality , COVID-19/pathology , Hospital Mortality , Patient Acuity , Pneumonia, Viral/mortality , Risk Assessment/methods , Aged , Aged, 80 and over , Disease Progression , District of Columbia/epidemiology , Female , Hospitalization , Humans , Male , Maryland/epidemiology , Middle Aged , Pandemics , Pneumonia, Viral/virology , Predictive Value of Tests , Prognosis , Registries , Retrospective Studies , Risk Factors , SARS-CoV-2
6.
Ann Intern Med ; 174(1): 33-41, 2021 01.
Article in English | MEDLINE | ID: covidwho-1067966

ABSTRACT

BACKGROUND: Risk factors for progression of coronavirus disease 2019 (COVID-19) to severe disease or death are underexplored in U.S. cohorts. OBJECTIVE: To determine the factors on hospital admission that are predictive of severe disease or death from COVID-19. DESIGN: Retrospective cohort analysis. SETTING: Five hospitals in the Maryland and Washington, DC, area. PATIENTS: 832 consecutive COVID-19 admissions from 4 March to 24 April 2020, with follow-up through 27 June 2020. MEASUREMENTS: Patient trajectories and outcomes, categorized by using the World Health Organization COVID-19 disease severity scale. Primary outcomes were death and a composite of severe disease or death. RESULTS: Median patient age was 64 years (range, 1 to 108 years); 47% were women, 40% were Black, 16% were Latinx, and 21% were nursing home residents. Among all patients, 131 (16%) died and 694 (83%) were discharged (523 [63%] had mild to moderate disease and 171 [20%] had severe disease). Of deaths, 66 (50%) were nursing home residents. Of 787 patients admitted with mild to moderate disease, 302 (38%) progressed to severe disease or death: 181 (60%) by day 2 and 238 (79%) by day 4. Patients had markedly different probabilities of disease progression on the basis of age, nursing home residence, comorbid conditions, obesity, respiratory symptoms, respiratory rate, fever, absolute lymphocyte count, hypoalbuminemia, troponin level, and C-reactive protein level and the interactions among these factors. Using only factors present on admission, a model to predict in-hospital disease progression had an area under the curve of 0.85, 0.79, and 0.79 at days 2, 4, and 7, respectively. LIMITATION: The study was done in a single health care system. CONCLUSION: A combination of demographic and clinical variables is strongly associated with severe COVID-19 disease or death and their early onset. The COVID-19 Inpatient Risk Calculator (CIRC), using factors present on admission, can inform clinical and resource allocation decisions. PRIMARY FUNDING SOURCE: Hopkins inHealth and COVID-19 Administrative Supplement for the HHS Region 3 Treatment Center from the Office of the Assistant Secretary for Preparedness and Response.


Subject(s)
COVID-19/mortality , Hospital Mortality , Hospitalization , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Disease Progression , Female , Humans , Infant , Male , Middle Aged , Pandemics , Retrospective Studies , Risk Factors , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL